Skip to main content

基於搖晃即時視訊之強韌式火焰偵測法

基於搖晃即時視訊之強韌式火焰偵測法


我們的論文被 2019 工程科技應用研討會所接受。會議日期是西元二零一九年四月十二日,地點在台北城市科技大學的工程學院。

我們將研究成果放在 GitHub,網址是 https://github.com/laitaiyu/ComputerVision__HEFD-MCS,我們提供部分的程式原始碼,以及完整的實驗檔案。

火焰偵測的兩個關鍵問題是高準確率和低誤報率,本研究主要關注後者。在過去,來自監視的靜態視頻 - 用於分析和發現火焰。然而,這些研究是使用背景方法進行的,後者無法處理動態視頻,例如用手機拍攝的視頻。為了實現靜態和動態視頻的全自動火焰檢測,本研究採用了兩種高效策略。首先,特徵提取:建立強Sobel邊緣和火焰紋理,然後增強圖像邊緣。火焰顏色過濾器規則有助於過濾火焰候選區域。其次,高性能分析方法:通過運動向量法和填充率過濾火焰或非火焰,然後使用組來建立火焰的輪廓。我們的實驗結果表明,靜態,動態(包括搖晃)和實時視頻的結果為92.83%(TP),9.76%(FP),1.77%(FN)。

本研究旨在從不穩定的火場景鏡頭或從不同角度拍攝的鏡頭中檢測火焰。 本節討論了所提出的火焰檢測方法的可行性和可靠性。 使用所提出的方法構建高效火焰檢測移動相機系統(HEFD-MCS)。 實驗結果證明HEFD-MCS可以正確捕捉火焰。

圖1 火焰偵測系統流程圖

圖1顯示了所提出系統的過程。 火焰檢測有兩個主要步驟。 首先,特徵提取:建立強Sobel邊緣和火焰紋理,然後增強圖像邊緣。 火焰顏色過濾器規則有助於過濾火焰候選區域。 其次,高性能分析方法:通過運動矢量法和填充率過濾火焰或非火焰,然後使用組建立火災探測輪廓。

大多數搖搖欲墜的視頻來自I.M.C. 數據庫(中山大學智能媒體計算實驗室)。 按照I.M.C. 火災數據集網站截至2015年1月19日,http://vision.sysu.edu.cn/systems/fire-detection/)。 森林火災1 (forst 1)和森林火災2 (forst 2)視頻都來自A. E. Cetin [2]。 (截至2018年11月12日,基於計算機視覺的火災探測軟件.http://signal.ee.bilkent.edu.tr/VisiFire)。 在著名的標準測試視頻中,從美國國家標準與技術研究院所提供的火災視訊,聖誕樹可以在2秒內燃燒。

Video Type
Static Video: 10 videos
Video Source: A. E. Cetin [2], National Institute of Standards and Technology, Intelligent Media Computing Laboratory, Sun Yat-Sen University
Shaky (Dynamic) Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University
Authors True Positive False Positive True Negative Precision Accuracy F-Measure e True Positive False Positive True Negative Precision Accuracy F-Measure e
[1]
732.3
114.2
114.2
26.15
27.2
34.3
1242.4
754.4
0
69.19
67.85
80.02
[14]
720.1
114.2
114.2
26.16
27.04
34.11
1242.4
576.6
0
73.56
73.56
83.09
[18]
1421.8
174.3
174.3
63.6
65.01
72.62
1242.4
153.6
0
89.49
89.49
93.07
HEFD-MCS
1574.6
238.55
318.36
90.6
88.7
90.5
1240
150.6
0
89.89
89.55
93.11

Video Type
Static Video: 2 videos
Video Source: A. E. Cetin [2] , UltimateChase.com
Authors Title Frame Per Second (FPS) Resolution
(Pixel)
Total Frames True Positive False Positive False Negative Average Time Per Frame
[5] Forest fire 2
15
400×256
178
24.7%
No provided
No provided
2 Second
[17] Pos Video 11
30
352×288
505
19.7%
No provided
No provided
‪50 Milli-Second
HEFD-MCS Forest fire 2
15
400×256
178
100%
0%
0%
80 Milli-Second
Pos Video 11
30
352×288
505
78.2%
8.7%
0%
40 Milli-Second
Video Type
The Negative Sample of the Static Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University
5 Sample Videos
98%
2%
0%
40 Milli-Second
[1]
5 Sample Videos
0%
100%
0%
30 Milli-Second
[14]
5 Sample Videos
0%
100%
0%
30 Milli-Second
[18]
5 Sample Videos
67%
33%
0%
30 Milli-Second

Shaky (Dynamic) Video: 1 video
Video Source: UltimateChase.com
Authors True Positive False Positive False Negative Average Time Per Frame
[5] The study [5] uses a background model. Therefore, it is not suitable the shaky video.
[17]
83%
No provided
No provided
50 Milli-Second
HEFD-MCS
Shaky (Dynamic) Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University
90%
12%
0.19%
150 Milli-Second
[1][14][18] These studies [1][14][18] use their background model. Therefore, they are not suitable the shaky video.

本文提出了一種用於實時視頻監控系統的高效火焰檢測方法。 雖然錯誤警報(FP)和丟失率(FN)沒有完全消除,但它們都在可接受的範圍內。 這項研究具有很高的準確性,與其他研究的不同(動態)視頻分析不同。 大多數研究的特徵在於背景或靜態背景規則的運動向量,這些規則不適用於搖晃(動態)視頻和不適合移動設備的繁重計算工作量。 該研究需要較低的計算工作量,使其成為移動設備的理想選擇。 鑑於移動設備的普及,通過它們報告火災事件是一種實時可靠的應用。 我們提出了一種高效的火焰檢測算法,適用於靜態,動態,室內,室外和實時視頻。 這項研究是部分開源研究,原始碼網址: https://github.com/laitaiyu/ComputerVision__HEFD-MCS/

[1] A. Chenebert, T. P. Breckon, and A. Gaszczak, "A Non-Temporal Texture Driven Approach to Real-Time Fire Detection," In IEEE International Conference on Image Processing, Brussels, 2011, pp. 1741-1744.
[2] A. E. Cetin. (2018, Nov. 12). Computer Vision Based Fire Detection Software. [Online]. Available: http://signal.ee.bilkent.edu.tr/VisiFire/
[3] A. Stadler, T. Windisch, and K. Diepold, "Comparison of Intensity Flickering Features for Video Based Flame Detection Algorithms," Fire Safety Journal, vol. 66, May 2014, pp. 1-7.
[4] B. C. Ko, S. J. Ham, and J. Y. Nam, "Modeling and Formalization of Fuzzy Finite Automata for Detection of Irregular Fire Flames, "IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 12, Dec. 2011, pp. 1903-1912.
[5] B. Jiang, Y. Lu, X. Li, and L. Lin, "Towards A Solid Solution of Real-Time Fire and Flame Detection," Multimedia Tools and Applications, vol. 74, no. 3, Jul. 2014, pp. 689-705.
[6] B. M. N. de Souza, J. Facon, D. Menotti, "Colorness Index Strategy for Pixel Fire Segmentation," 2017 International Joint Conference on Neural Networks, Anchorage, AK, USA, 2017, pp. 1057-1063.
[7] B. U. Toreyin, Y. Dedeoglu, U. Gdkbay, and A. E. Cetin, "Computer Vision Based Method for Real-Time Fire and Flame Detection," Pattern Recognition Letters, vol. 27, no. 1, Jan. 2006, pp. 49–58.
[8] J. Y. Kuo, T. Y. Lai, Y. Y. Fanjing, F. C. Huang, Y. H. Lao, "A Behavior-Based Flame Detection Method on Real-Time Video Surveillance System," Journal of the Chinese Institute of Engineers, vol. 38, no. 7, Jun. 2015, pp. 947-958.
[9] K. Souza, S. Guimaraes, Z. Patrocinio, A. de A Araujo, and J. Cousty, "A Simple Hierarchical Clustering Method for Improving Flame Pixel Classification," 23rd International Conference on Tools with Artificial Intelligence, Boca Raton, FL, 2011, pp. 110-117.
[10] M. Mueller, P. Karasev, I. Kolesov, and A. Tannenbaum, "Optical Flow Estimation for Flame Detection in Videos," IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2786-2797, Apr. 2013.
[11] National Fire Protection Association. NFPA 72. Accessed August 10 2013, http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=72.
[12] S. Wang, Y. He, J. Zou, B. Duan and J. Wang, "A Flame Detection Synthesis Algorithm," Fire Technology, vol. 50, no. 4, pp. 959–975, Jul. 2014.
[13] T. Celik, H. Ozkaramanli, and H. Demirel, "Fire Pixel Classification Using Fuzzy Logic and Statistical Color Model," In IEEE International Conference on Speech and Signal Processing, Honolulu, HI, 2007, pp. I-1205-I-1208.
[14] T. Çelik, H. Demirel, and H. Ozkaramanli, "Automatic Fire Detection in Video Sequences," in Proc. of the 14th European Signal Processing Conference, Florence, Italy, Sep. 4-8, 2006.
[15] T. Çelik, H. Özkaramanl, and H. Demirel, "Fire and Smoke Detection without Sensors," in Proc. of the 14th European Signal Processing Conference, Florence, Italy, 2007, pp. 1794–1798.
[16] W. T. A. Budi, and I. S. Suwardi, "Fire Alarm System Based-On Video Processing," In International Conference on Electrical Engineering and Informatics, Bandung, 2011, pp. 1-7.
[17] Y. Habiboglu, O. Günay, and A. E. Cetin, "Covariance Matrix-Based Fire and Flame Detection Method in Video," Machine Vision and Applications, vol. 23, no. 6, Sep. 2012, pp. 1103–1113.
[18] Y. Qiang, B. Pei, and J. J. Zhao, "Forest Fire Image Intelligent Recognition Based on the Neural Network," Journal of Multimedia, vol. 9, no. 3, Mar. 2014, pp. 449-455.

Comments

Popular posts from this blog

Python 日期與時間的處理

Visual Basic 6.0 (VB6) 程式語言案例學習 (10. 條碼列印程式)

寫作:波蘭文學習之旅:1-1. 波蘭文字母與發音(注音版)

Python 日期與時間的處理

Image

Visual Basic 6.0 (VB6) 程式語言案例學習 (10. 條碼列印程式)

Image

寫作:波蘭文學習之旅:1-1. 波蘭文字母與發音(注音版)

Image

數位影像處理:最佳化處理策略之快速消除扭曲演算法

Image

Visual Basic .Net (VB.Net) 程式語言案例學習 (06. 題庫測驗系統)

Image

用10種程式語言做影像二值化(Image binarization)

Visual Basic 6.0 (VB6) 程式語言案例學習 (04. 人事考勤管理系統)

Image

修復損毀的 SQLite DB 資料庫

Image

Visual Basic 6.0 (VB6) 程式語言案例學習 (07. 收據列印程式)

Image

Visual Basic .Net (VB.Net) 程式語言案例學習 (03. 場地預約系統)

Image