计算机视觉:基于摇晃实时视讯之强韧式火焰侦测法
基于摇晃实时视讯之强韧式火焰侦测法
我们的论文被 2019 工程科技应用研讨会所接受。会议日期是公元二零一九年四月十二日,地点在台北城市科技大学的工程学院。
我们将研究成果放在 GitHub,网址是 https://github.com/laitaiyu/ComputerVision__HEFD-MCS,我们提供部分的程序原始码,以及完整的实验档案。
火焰侦测的两个关键问题是高准确率和低误报率,本研究主要关注后者。在过去,来自监视的静态视频 - 用于分析和发现火焰。然而,这些研究是使用背景方法进行的,后者无法处理动态视频,例如用手机拍摄的视频。为了实现静态和动态视频的全自动火焰检测,本研究采用了两种高效策略。首先,特征提取:建立强Sobel边缘和火焰纹理,然后增强图像边缘。火焰颜色过滤器规则有助于过滤火焰候选区域。其次,高性能分析方法:通过运动向量法和填充率过滤火焰或非火焰,然后使用组来建立火焰的轮廓。我们的实验结果表明,静态,动态(包括摇晃)和实时视频的结果为92.83%(TP),9.76%(FP),1.77%(FN)。
本研究旨在从不稳定的火场景镜头或从不同角度拍摄的镜头中检测火焰。 本节讨论了所提出的火焰检测方法的可行性和可靠性。 使用所提出的方法构建高效火焰检测移动相机系统(HEFD-MCS)。 实验结果证明HEFD-MCS可以正确捕捉火焰。
大多数摇摇欲坠的视频来自I.M.C. 数据库(中山大学智能媒体计算实验室)。 按照I.M.C. 火灾数据集网站截至2015年1月19日,http://vision.sysu.edu.cn/systems/fire-detection/)。 森林火灾1 (forst 1)和森林火灾2 (forst 2)视频都来自A. E. Cetin [2]。 (截至2018年11月12日,基于计算器视觉的火灾探测软件.http://signal.ee.bilkent.edu.tr/VisiFire)。 在著名的标准测试视频中,从美国国家标准与技术研究院所提供的火灾视讯,圣诞树可以在2秒内燃烧。
Video Type |
Static Video: 10 videos
Video Source: A. E. Cetin [2], National Institute of Standards and Technology, Intelligent Media Computing Laboratory, Sun Yat-Sen University |
Shaky (Dynamic) Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University |
||||||||||
Authors | True Positive | False Positive | True Negative | Precision | Accuracy | F-Measure e | True Positive | False Positive | True Negative | Precision | Accuracy | F-Measure e |
[1] |
732.3
|
114.2
|
114.2
|
26.15
|
27.2
|
34.3
|
1242.4
|
754.4
|
0
|
69.19
|
67.85
|
80.02
|
[14] |
720.1
|
114.2
|
114.2
|
26.16
|
27.04
|
34.11
|
1242.4
|
576.6
|
0
|
73.56
|
73.56
|
83.09
|
[18] |
1421.8
|
174.3
|
174.3
|
63.6
|
65.01
|
72.62
|
1242.4
|
153.6
|
0
|
89.49
|
89.49
|
93.07
|
HEFD-MCS |
1574.6
|
238.55
|
318.36
|
90.6
|
88.7
|
90.5
|
1240
|
150.6
|
0
|
89.89
|
89.55
|
93.11
|
Video Type
|
Static Video: 2 videos
Video Source: A. E. Cetin [2] , UltimateChase.com |
|||||||
Authors | Title | Frame Per Second (FPS) | Resolution (Pixel) |
Total Frames | True Positive | False Positive | False Negative | Average Time Per Frame |
[5] | Forest fire 2 |
15
|
400×256
|
178
|
24.7%
|
No provided
|
No provided
|
2 Second
|
[17] | Pos Video 11 |
30
|
352×288
|
505
|
19.7%
|
No provided
|
No provided
|
50 Milli-Second
|
HEFD-MCS | Forest fire 2 |
15
|
400×256
|
178
|
100%
|
0%
|
0%
|
80 Milli-Second
|
Pos Video 11 |
30
|
352×288
|
505
|
78.2%
|
8.7%
|
0%
|
40 Milli-Second
|
|
Video Type
|
The Negative Sample of the Static Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University |
|||||||
5 Sample Videos
|
98%
|
2%
|
0%
|
40 Milli-Second
|
||||
[1] |
5 Sample Videos
|
0%
|
100%
|
0%
|
30 Milli-Second
|
|||
[14] |
5 Sample Videos
|
0%
|
100%
|
0%
|
30 Milli-Second
|
|||
[18] |
5 Sample Videos
|
67%
|
33%
|
0%
|
30 Milli-Second
|
Shaky (Dynamic) Video: 1 video
Video Source: UltimateChase.com |
||||
Authors | True Positive | False Positive | False Negative | Average Time Per Frame |
[5] | The study [5] uses a background model. Therefore, it is not suitable the shaky video. | |||
[17] |
83%
|
No provided
|
No provided
|
50 Milli-Second
|
HEFD-MCS |
Shaky (Dynamic) Video: 5 videos
Video Source: Intelligent Media Computing Laboratory, Sun Yat-Sen University |
|||
90%
|
12%
|
0.19%
|
150 Milli-Second
|
|
[1][14][18] | These studies [1][14][18] use their background model. Therefore, they are not suitable the shaky video. |
本文提出了一种用于实时视频监控系统的高效火焰检测方法。 虽然错误警报(FP)和丢失率(FN)没有完全消除,但它们都在可接受的范围内。 这项研究具有很高的准确性,与其他研究的不同(动态)视频分析不同。 大多数研究的特征在于背景或静态背景规则的运动向量,这些规则不适用于摇晃(动态)视频和不适合移动设备的繁重计算工作量。 该研究需要较低的计算工作量,使其成为移动设备的理想选择。 鉴于移动设备的普及,通过它们报告火灾事件是一种实时可靠的应用。 我们提出了一种高效的火焰检测算法,适用于静态,动态,室内,室外和实时视频。 这项研究是部分开源研究,原始码网址: https://github.com/laitaiyu/ComputerVision__HEFD-MCS/ 。
[1] A. Chenebert, T. P. Breckon, and A. Gaszczak, "A Non-Temporal Texture Driven Approach to Real-Time Fire Detection," In IEEE International Conference on Image Processing, Brussels, 2011, pp. 1741-1744.
[2] A. E. Cetin. (2018, Nov. 12). Computer Vision Based Fire Detection Software. [Online]. Available: http://signal.ee.bilkent.edu.tr/VisiFire/
[3] A. Stadler, T. Windisch, and K. Diepold, "Comparison of Intensity Flickering Features for Video Based Flame Detection Algorithms," Fire Safety Journal, vol. 66, May 2014, pp. 1-7.
[4] B. C. Ko, S. J. Ham, and J. Y. Nam, "Modeling and Formalization of Fuzzy Finite Automata for Detection of Irregular Fire Flames, "IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 12, Dec. 2011, pp. 1903-1912.
[5] B. Jiang, Y. Lu, X. Li, and L. Lin, "Towards A Solid Solution of Real-Time Fire and Flame Detection," Multimedia Tools and Applications, vol. 74, no. 3, Jul. 2014, pp. 689-705.
[6] B. M. N. de Souza, J. Facon, D. Menotti, "Colorness Index Strategy for Pixel Fire Segmentation," 2017 International Joint Conference on Neural Networks, Anchorage, AK, USA, 2017, pp. 1057-1063.
[7] B. U. Toreyin, Y. Dedeoglu, U. Gdkbay, and A. E. Cetin, "Computer Vision Based Method for Real-Time Fire and Flame Detection," Pattern Recognition Letters, vol. 27, no. 1, Jan. 2006, pp. 49–58.
[8] J. Y. Kuo, T. Y. Lai, Y. Y. Fanjing, F. C. Huang, Y. H. Lao, "A Behavior-Based Flame Detection Method on Real-Time Video Surveillance System," Journal of the Chinese Institute of Engineers, vol. 38, no. 7, Jun. 2015, pp. 947-958.
[9] K. Souza, S. Guimaraes, Z. Patrocinio, A. de A Araujo, and J. Cousty, "A Simple Hierarchical Clustering Method for Improving Flame Pixel Classification," 23rd International Conference on Tools with Artificial Intelligence, Boca Raton, FL, 2011, pp. 110-117.
[10] M. Mueller, P. Karasev, I. Kolesov, and A. Tannenbaum, "Optical Flow Estimation for Flame Detection in Videos," IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2786-2797, Apr. 2013.
[11] National Fire Protection Association. NFPA 72. Accessed August 10 2013, http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=72.
[12] S. Wang, Y. He, J. Zou, B. Duan and J. Wang, "A Flame Detection Synthesis Algorithm," Fire Technology, vol. 50, no. 4, pp. 959–975, Jul. 2014.
[13] T. Celik, H. Ozkaramanli, and H. Demirel, "Fire Pixel Classification Using Fuzzy Logic and Statistical Color Model," In IEEE International Conference on Speech and Signal Processing, Honolulu, HI, 2007, pp. I-1205-I-1208.
[14] T. Çelik, H. Demirel, and H. Ozkaramanli, "Automatic Fire Detection in Video Sequences," in Proc. of the 14th European Signal Processing Conference, Florence, Italy, Sep. 4-8, 2006.
[15] T. Çelik, H. Özkaramanl, and H. Demirel, "Fire and Smoke Detection without Sensors," in Proc. of the 14th European Signal Processing Conference, Florence, Italy, 2007, pp. 1794–1798.
[16] W. T. A. Budi, and I. S. Suwardi, "Fire Alarm System Based-On Video Processing," In International Conference on Electrical Engineering and Informatics, Bandung, 2011, pp. 1-7.
[17] Y. Habiboglu, O. Günay, and A. E. Cetin, "Covariance Matrix-Based Fire and Flame Detection Method in Video," Machine Vision and Applications, vol. 23, no. 6, Sep. 2012, pp. 1103–1113.
[18] Y. Qiang, B. Pei, and J. J. Zhao, "Forest Fire Image Intelligent Recognition Based on the Neural Network," Journal of Multimedia, vol. 9, no. 3, Mar. 2014, pp. 449-455.
Comments
Post a Comment